US 20210150316A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0150316 A1

Riemenschneider et al. 43) Pub. Date: May 20, 2021
(54) DATA OBJECT CLASSIFICATION USING AN GO6K 9/62 (2006.01)
OPTIMIZED NEURAL NETWORK GO6K 9/68 (2006.01)
(52) US. CL
(71) Applicants:Disney Enterprises, Inc., Burbank, CA CPC e, GOG6N 3/0481 (2013.01); GO6N 3/08
(US); ETH ZURICH, ZURICH (CH) (2013.01); GO6K 9/68 (2013.01); GO6K
9/6267 (2013.01); GO6K 9/6259 (2013.01)
(72) Inventors: Hayko Jochen Wilhelm
Riemenschneider, Zurich (CH); (57) ABSTRACT
Leonhard Markus Helminger, Zurich A system includes a computing platform having a hardware
(CH); Christopher Richard Schroers, processor and a memory storing a software code and a neural
Zurich (CH); Abdelaziz Djelouah, network (NN) having multiple layers including a last acti-
Zurich (CH) vation layer and a loss layer. The hardware processor
executes the software code to identify different combina-
(21) Appl. No.: 16/808,069 tions of layers for testing the NN, each combination includ-
ing candidate function(s) for the last activation layer and
(22) Filed: Mar. 3, 2020 candidate function(s) for the loss layer. For each different
combination, the software code configures the NN based on
Related U.S. Application Data the combination, inputs, into the configured NN, a training
(60) Provisional application No. 62/936,125, filed on Nov. dataset including multip}e da.ta objects, receives,. from the
15. 2019. configured NN, a classification of the data objects, and
’ generates a performance assessment for the combination
Publication Classification based on the classification. The software code determines a
preferred combination of layers for the NN including
(51) Int. CL selected candidate functions for the last activation layer and
GO6N 3/04 (2006.01) the loss layer, based on a comparison of the performance
GO6N 3/08 (2006.01) assessments.

100

r'e

Computing Platform 102
Hardware Processor | ~ 104
System Memory 106
- Data Classification
NN 140
116~ 18
Software Code 110 |
A
A
Training Database 112 I
]

128

Dataset Repository 120

Network
108

O~ 114

Patent Application Publication = May 20, 2021 Sheet 1 of 5 US 2021/0150316 A1

100

Computing Platform 102

Hardware Processor [104

System Memory 106

Data Classification
NN 140

116 118

Software Code 11

:

Training Database 112

Network

108

Dataset Repository 120

Patent Application Publication = May 20, 2021 Sheet 2 of 5 US 2021/0150316 A1

240

Data Classification NN

242(1) 242(n-1) 242(n) 244

216

Patent Application Publication = May 20, 2021 Sheet 3 of 5 US 2021/0150316 A1

Identify different combinations of layers for

testing a data classification neural network
(NN) having multiple layers including one or

more activation layer(s) and a loss layer,
each combination of the different

combinations of layers including one or more
candidate functions for a last activation layer
of the one or more activation layers and one
or more candidate functions for the loss layer

350

351

For each combination of layers,
configure the data classification NN

based on the combination 352

For each combination of layers, input, into the
configured data classification NN, a training
dataset including multiple data objects

353

For each combination of layers,
receive, from the configured data
classification NN, a classification of

the data objects in the training dataset 354

For each combination of layers, generate a
performance assessment for the combination
based on the classification

355

Determine a preferred combination of layers
for the data classification NN from among the
different combinations of layers based on a
comparison of the performance assessments,
the preferred combination including a
selected candidate from amongst the
candidate function(s) for the last activation
layer and a selected candidate from amongst

356
the candidate function(s) for the loss layer

Patent Application Publication = May 20, 2021 Sheet 4 of 5 US 2021/0150316 A1

460

Obtain multiple real images
461

Composite the real images form a montage

of the real images
462

Identify labels for association

with the montage 463

Label the montage using one or
more of the identified labels to generate
images for use in a training dataset for

a data classification neural network (NN),
where noise is parametrically introduced
into the training dataset, resulting in a
subset of the images of the training
dataset being purposely mislabeled

464

Patent Application Publication = May 20, 2021 Sheet 5 of 5 US 2021/0150316 A1

516

Training Dataset

Fig. 5

US 2021/0150316 Al

DATA OBJECT CLASSIFICATION USING AN
OPTIMIZED NEURAL NETWORK

RELATED APPLICATION(S)

[0001] The present application claims the benefit of and
priority to a pending Provisional Patent Application Ser. No.
62/936,125, filed Nov. 15, 2019, and titled “Loss for Resis-
tance to Noise (LoRN),” which is hereby incorporated fully
by reference into the present application.

BACKGROUND

[0002] Datasets are a subset of real-world distributions
and contain biases and noise. Despite being carefully con-
structed, deep neural networks (NNs) trained as classifiers
on noisy datasets tend to inherit their biases and errors.
Those biases and errors present as noise in a dataset may
take the form of incorrect labels applied to the data, missing
labels, supertluous labels, as well as label frequency imbal-
ance, for instance. Moreover, extreme noise is a typical
characteristic of unstructured datasets including highly var-
ied data for which it is often not feasible to utilize standard
data preparation techniques, such as structuring or cleansing
for example, before deep learning takes place.

[0003] A recent conventional solution to the problem of
noisy datasets assigns a specific focus for each label and
sample in the dataset. However, calculation of the focal loss
requires additional weights and tuning, which limits the
usefulness of the solution in applications for which it is not
specifically designed. Another conventional approach relies
on a pure softmax activation and multi-class cost calcula-
tion, but is typically not robust enough for unstructured data.

SUMMARY

[0004] There are provided systems and methods for per-
forming data object classification using an optimized neural
network, substantially as shown in and/or described in
connection with at least one of the figures, and as set forth
more completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG.1 shows a diagram of an exemplary system for
classifying data objects, according to one implementation;
[0006] FIG. 2 shows an exemplary diagram of a data
classification neural network suitable for use in the system
of FIG. 1, according to one implementation;

[0007] FIG. 3 shows a flowchart presenting an exemplary
method for use by a system for classifying data objects to
train a neural network using a noisy dataset, according to
one implementation;

[0008] FIG. 4 shows a flowchart presenting an exemplary
method for use by the system of FIG. 1 to generate a dataset
for training a neural network to classify images, according
to one implementation; and

[0009] FIG. 5 shows an exemplary diagram of a portion of
a dataset generated using the method outlined by the flow-
chart in FIG. 4, according to one implementation.

DETAILED DESCRIPTION

[0010] The following description contains specific infor-
mation pertaining to implementations in the present disclo-
sure. One skilled in the art will recognize that the present
disclosure may be implemented in a manner different from

May 20, 2021

that specifically discussed herein. The drawings in the
present application and their accompanying detailed
description are directed to merely exemplary implementa-
tions. Unless noted otherwise, like or corresponding ele-
ments among the figures may be indicated by like or
corresponding reference numerals. Moreover, the drawings
and illustrations in the present application are generally not
to scale, and are not intended to correspond to actual relative
dimensions.

[0011] The present application discloses systems and
methods for performing data object classification using an
optimized neural network that overcome the drawbacks and
deficiencies in the conventional art. It is noted that, in some
implementations, the methods disclosed by the present
application may be performed as substantially automated
processes by substantially automated systems. It is further
noted that, as used in the present application, the terms
“automation,” “automated”, and “automating” refer to sys-
tems and processes that do not require the participation of a
human user, such as a system operator. Although, in some
implementations, a human system operator or administrator
may review the performance of the automated systems
described herein, that human involvement is optional. Thus,
the methods described in the present application may be
performed under the control of hardware processing com-
ponents of the disclosed automated systems.

[0012] It is also noted that although the present concepts
confer exceptional advantages over conventional solutions
when training datasets are extremely noisy, those same
concepts can be used to optimize training of neural networks
using training datasets that are structured, cleansed, or
otherwise lacking in significant noise in the form of misla-
beled data, unlabeled data, superfluously labeled data, or
label frequency imbalance.

[0013] Moreover, as defined in the present application, an
artificial neural network, also known simply as a neural
network (hereinafter “NN™), is a type of machine learning
framework in which patterns or learned representations of
observed data are processed using highly connected com-
putational layers that map the relationship between inputs
and outputs. A “deep neural network,” in the context of deep
learning, may refer to a neural network that utilizes multiple
hidden layers between input and output layers, which may
allow for learning based on features not explicitly defined in
raw data. As used in the present application, a feature labeled
as an NN refers to a deep neural network. Various forms of
NNs may be used to make predictions about new data based
on past examples or “training dataset.” In various imple-
mentations, NNs may be trained as classifiers and may be
utilized to perform image processing or natural-language
processing.

[0014] FIG. 1 shows a diagram of exemplary system 100
for classifying data objects, according to one implementa-
tion. As discussed below, system 100 may be implemented
using a computer server accessible over a local area network
(LAN) or may be implemented as a cloud-based system. As
shown in FIG. 1, system 100 includes computing platform
102 having hardware processor 104, and system memory
106 implemented as a non-transitory storage device.
According to the present exemplary implementation, system
memory 106 stores software code 110, training database
112, and data classification NN 140.

[0015] As further shown in FIG. 1, system 100 is imple-
mented within a use environment including communication

US 2021/0150316 Al

network 108 and dataset repository 120. Also shown in FIG.
1 are network communication links 128 interactively con-
necting dataset repository 120 and system 100 via commu-
nication network 108, source data 114 obtainable from
dataset repository 120 by system 100, training dataset 116
including multiple data objects, and classification 118 of the
data objects included in training dataset 116, output by data
classification NN 140.

[0016] It is noted that, although the present application
refers to software code 110, data classification NN 140, and
training database 112 as being stored in system memory 106
for conceptual clarity, more generally, system memory 106
may take the form of any computer-readable non-transitory
storage medium. The expression “computer-readable non-
transitory storage medium,” as used in the present applica-
tion, refers to any medium, excluding a carrier wave or other
transitory signal that provides instructions to hardware pro-
cessor 104 of computing platform 102. Thus, a computer-
readable non-transitory medium may correspond to various
types of media, such as volatile media and non-volatile
media, for example. Volatile media may include dynamic
memory, such as dynamic random access memory (dynamic
RAM), while non-volatile memory may include optical,
magnetic, or electrostatic storage devices. Common forms of
computer-readable non-transitory media include, for
example, optical discs, RAM, programmable read-only
memory (PROM), erasable PROM (EPROM), and FLASH
memory.

[0017] It is further noted that although FIG. 1 depicts
software code 110, data classification NN 140, and training
database 112 as being co-located in system memory 106,
that representation is also provided merely as an aid to
conceptual clarity. More generally, system 100 may include
one or more computing platforms 102, such as computer
servers for example, which may be co-located, or may form
an interactively linked but distributed system, such as a
cloud-based system, for instance.

[0018] As a result, hardware processor 104 and system
memory 106 may correspond to distributed processor and
memory resources within system 100. Thus, it is to be
understood that software code 110, data classification NN
140, and training database 112 may be stored and/or
executed using the distributed memory and/or processor
resources of system 100. Computing platform 102 may
correspond to one or more web servers, accessible over a
packet-switched network such as the Internet, for example.
Alternatively, computing platform 102 may correspond to
one or more computer servers supporting a wide area
network (WAN), a LAN, or included in another type of
limited distribution or private network.

[0019] System 100 utilizes software code 110 to optimize
the configuration of data classification NN 140 with respect
to its performance and robustness to the presence of noise in
training dataset 116. For example, such noise may include
small margin and large margin label noise, label frequency
imbalance in which one or more labels are present in training
dataset 116 much more frequently than others, and/or the
presence of a large number of data classes for the task of
multi-label classification. In order to optimize the configu-
ration of data classification NN 140, hardware processor 104
executes software code 110 to determine a preferred com-
bination of activation and loss functions implemented by the
activation and loss layers of data classification NN 140.

May 20, 2021

[0020] By way of context, in the domain of data classifi-
cation, the conventional choices for loss functions have
depended on the type of data being classified. For multi-
label classification, the goal is to provide multiple labels
within one classification result. For multi-class classifica-
tion, by contrast, where the cardinality of the class is more
than binary, only one class is active at a time. The softmax
loss, or logistic loss, has traditionally been the preferred loss
function for multi-class problems. For the multi-label prob-
lem, on the other hand, a sigmoid-based loss has tradition-
ally been used. In each use case, however, either the softmax
or the sigmoid function was used, but those activations were
not used in combination. In the presence of noise, however,
the performance of either activation function alone is sub-
optimal.

[0021] Referring now to FIG. 2, FIG. 2 shows an exem-
plary diagram of data classification NN 240 suitable for use
in system 100, in FIG. 1. As shown in FIG. 2, data
classification NN 240 includes multiple “n” non-linear acti-
vation layers 242 (hereinafter “activation layers 242”)
including first activation layer 242(1) through last activation
layer 242(»). In addition data classification NN 240 includes
loss layer 244 following last activation layer 242(n). Also
identified in FIG. 2 are activation layer 242(n-1) preceding
last activation layer 242(n), training dataset 216, and clas-
sification 218 of data objects included in training dataset
216.

[0022] Training dataset 216 and classification 218 corre-
spond respectively in general to training dataset 116 and
classification 118, in FIG. 1, and those features may share
any of the characteristics attributed to either corresponding
feature by the present disclosure. In addition, data classifi-
cation NN 240 corresponds in general to data classification
NN 140, and those features may share the characteristics
attributed to either corresponding feature by the present
disclosure. That is to say, like data classification NN 240,
data classification NN 140 may include multiple activation
layers 242 including last activation layer 242(»), and loss
layer 244.

[0023] It is noted that a basic NN includes a variety of
layers such as loss layers, non-linear activation layers, and
normalization layers. Those layers are typically used in
well-established arrangements. However, as disclosed in the
present application, when trained using a noisy training
dataset, there are more effective alternative combinations of
layers that can result in significant performance benefits.
[0024] It is further noted that the optimization solution
disclosed herein models the noise learning as less strict
learning to provide a continuous convergence on noisy
labels, which are in turn less severely penalized. The com-
bination of activation layers 242 normalizes the output
values and further limits the output to an upper and lower
bound. This allows the co-existence of noisy and correct
labels.

[0025] Activation layers 242 may implement any of sev-
eral candidate activation functions. One or more of activa-
tion layers 242 may take the form of a rectified linear unit
(ReLU), exponential linear unit (ELU), or scaled ELU
(SELU), or may implement sigmoid, softmax, or softplus
activation functions, to name a few examples. Sigmoid and
softmax activations both provide a normalization on top of
the otherwise unbounded logit values to obtain probability
values. The classical sigmoid activation function is defined
as:

US 2021/0150316 Al

exp(a) _ 1 (Equation 1)

sigmoid(a) =

1 +exp(a) T 1+ exp(—a)

with 4 being the activation of the previous layer. The result
calculated per class individually is a softened response value
P, which is used as the predicted probability value in the loss
function or functions. By contrast the softmax activation
function incorporating all classes is defined as:

5 K
;Xﬂ = exp[&; - log[z exp(&j)]]
2, exp(@;) =
=1

(Equation 2)
softmax(a) =

The difference between the sigmoid and softmax activation
functions being that sigmoid normalizes multiple indepen-
dent classes on their own, whereas softmax normalizes over
all classes and pushes the top activation further up.

[0026] Subsequent to the activation function implemented
by the last activation layer 242(n), the loss is calculated by
loss layer 244 on top of the predicted values p of the last
activation layer 242(z). For multi-class classification tasks,
the cross entropy loss function is typically employed to
calculate the cost. The cross entropy loss function treats p as
the conditional empirical distribution over the given class
labels. It measures the uncertainty against a given ground
truth distribution q within the K distinct classes. The cross
entropy (hereinafter “CE”) loss, also known as logistic loss
due to its being identical except for a multiplicative constant,
is defined as:

CE(p, 9)=—2—“g,log(p) (Equation 3)

where p is the predicted probability distribution and q is the
static true distribution given by the labels. For multi-label
classification problems, the CE is calculated over each label
independently, similarly to binary cross entropy (hereinafter
“BCE”) loss, and results in a multi-label cross entropy
(hereinafter “MCE”) loss as:

MCE(p, 9)=2:-"¢;log(p:}+(1-¢,) log(1-py) (Equation 4)
where for each class there is a single predicted probability
value and its inverse. This effectively compares the two
distributions (i.e., target and predicted), whereas the pre-
dicted distribution is evaluated under a log-likelihood. Since
this requires valid distributions, there is the additional nor-
malization effect of the above mentioned sigmoid and soft-
max.

[0027] Almost any combination of activation layers 242
and loss layer 244 is feasible. We continue to derive the
following full loss functions for the standard cases of
multi-class and multi-label. For example, combining last
activation layer 242(») in the form of a softmax activation
layer with loss layer 244 implementing a CE loss gives
softCE as any of the following expressions:

K (Equation 5)
SOfiCE= = g log(p")

i=1

May 20, 2021
-continued
K (Equation 6)
exp(@)
softCE = —Z gi-lo T
=1 > exp(a;)
=1
(Equation 7)

K K
softCE = —Z g; -[&; - log[z exp(&j)]]
=1

J=1

i=

where p* is the softmax output of the activation 4. As shown
above, the explicit form can be simplified into the classic
form and its normalization can be subtracted.

[0028] Similarly, the sigmoid multi cross entropy sigMCE
can be expressed as any of the following:

(Equation 8)
sigM CE = —Z g;-log(p) + (1 — ;) log(1 - py)

g(exp(;)]
Zq‘ 1+ exp(@n)
(1—q;)-log(1—

sigMCE = Zq‘ log(1 + exp(—a;)) +
i=1

exp(@;)]
1 +exp(@;)

(Equation9)

(1 = gi)-(@; + log(l +exp(-a;))

K (Equation 10)
sigMCE = Z a; +log(l +exp(—a;)) —g;-a;
-1

K

= loglexp(a) + log(1 + exp(-a;) - a; - g;
i=1

K

= loglexp(ai)- (1 +exp(-a;))) — @i -g;

i=1

K
= - logfexp(@) + = ai-g;

where P is the sigmoid output of the activation a. As shown
above, the explicit form can be significantly simplified due
to the sigmoid.

[0029] A sigmoid activation followed by a CE loss leads
to different penalty costs expressed as either of the follow-
ing:

K (Equation 11)
sigCE = " g;-log(py)
=1

K
sigCEzz%-.]O :Xpﬂ
=1 ;1 exp(d;)

where just the active label portion is accumulated and the p
is the sigmoid of the activation a. This has the effect of
normalization while only evaluating where the label is
active.

(Equation 12)

US 2021/0150316 Al

[0030] Alternatively, combining softmax and MCE loss
gives softMCE as:

softMCE=-%,_ Kg-log(p*)+(1-q,)-log(1-§*) (Equation 13)

where both the active and inactive labels are accumulated
and the p* is the softmax of the activation a. As interesting
as the above combinations are, even more interesting are
combinations including activation layer 242(z-1) as well as
last activation layer 242(z) and loss layer 244. Those com-
binations can advantageously lead to aggregation of the
normalization effects imposed by each of activation layer
242(n-1) and last activation layer 242(») alone, for example
by applying a softmax cross entropy over a sigmoid activa-
tion, or vice versa.

[0031] As a specific example, activation layer 242(n-1)
implementing a sigmoid activation function, followed by
last activation layer 242(») implementing a softmax activa-
tion function, followed by loss layer 244 implementing a CE
loss function results in:

sigsoﬁCE:—Ei:qui-(ﬁi—log(EjleeXp @)

with p=sigmoid(a). This evaluates explicitly to either of the
following expressions:

(Equation 14)

(Equation 15)

K
sigsoftCE = _Z g 1o KeXP(ai)
=l 2, exp(@;)
=

K
sigsoftiCE = —g; -log{z exp(L(ajz]]
1 +exp(a;)

J=1

(Equation 16)

This also shows a normalization effect on active labels and
bounds the activation values for the subsequent softmax
layer. The maximal value after the sigmoid will be one, and
hence the softmax is normalized due to its bounded input,
similar to “double exponential” functions.

[0032] As another specific example, instead of the last
activation layer 242(») implementing a sofimax activation
function, it may implement an L,-normalization function.
That is to say, in one implementation, activation layer
242(n-1) may implement a sigmoid activation function,
followed by last activation layer 242(») implementing an
L,-normalization function, followed by loss layer 244

implementing a CE loss function, resulting in:
signormCE=%,_,%g,log(p*,) (Equation 17)

where p* is defined as:

R sigmoid(&;) (Equation 18)
o= ——m—
> sigmoid(a;)
=
[0033] Software code 110 and data classification NN 140/

240 will be further described by reference to FIG. 3 in
combination with FIGS. 1 and 2. FIG. 3 shows flowchart
350 presenting an exemplary method for use by system 100
to train data classification NN 140/240 using a noisy dataset,
such as training dataset 116/216, according to one imple-
mentation. With respect to the method outlined in FIG. 3, it
is noted that certain details and features have been left out

May 20, 2021

of flowchart 350 in order not to obscure the discussion of the
inventive features in the present application.

[0034] Referring now to FIG. 3 in combination with FIGS.
1 and 2, flowchart 350 begins with identifying multiple
different combinations of layers for testing data classifica-
tion NN 140/240, where each combination of the different
combinations of layers includes one or more candidate
functions for last activation layer 242(») and one or more
candidate functions for loss layer 244 (action 351). Some of
the possible combinations of layers for testing data classi-
fication NN 140/240 are described above by reference to
Equation 5 through Equation 17. Action 351 may be per-
formed by software code 110, executed by hardware pro-
cessor 104.

[0035] Flowchart 350 continues with, for each combina-
tion of the different combinations of layers identified in
action 351, configuring data classification NN 140/240
based on that combination (action 352). For example, for the
combination described by Equations 14, 15, and 16, data
classification NN 140/240 would be configured to include
sigmoid activation layer 242(n-1) implementing a sigmoid
activation function, softmax last activation layer 242(n)
implementing a softmax activation function, and CE loss
layer 244 implementing a CE loss function. As another
example, the combination described by Equation 17 would
result in data classification NN 140/240 being configured to
include sigmoid activation layer 242(»-1) implementing a
sigmoid activation function, [, -normalization last activation
layer 242(») implementing an L ,-normalization function,
and CE loss layer 244 implementing a CE loss function, and
so forth. Configuration of data classification NN 140/240 in
action 352 may be performed by software code 110,
executed by hardware processor 104.

[0036] Flowchart 350 continues with, for each combina-
tion of the different combinations of layers identified in
action 351, inputting, into configured data classification NN
140/240, training dataset 116/216 including multiple data
objects (action 353). The data objects included in training
dataset 116/216 may take a variety of forms such as images,
audio content, audio-visual content such as movies or tele-
vision content, an electronic book or document (e-book or
e-document), or a data structure, to name a few examples.
Training dataset 116/216 may be provided as an input to
configured data classification NN 140/240 by software code
110, executed by hardware processor 104.

[0037] Flowchart 350 continues with, for each combina-
tion of the different combinations of layers identified in
action 351, receiving, from configured data classification
NN 140/240, classification 118/218 of the data objects
included in training dataset 116/216 (action 354). Classifi-
cation 118/218 of the data objects included in training
dataset 116/216 may be received from configured data
classification NN 140/240 by software code 110, executed
by hardware processor 104.

[0038] Flowchart 350 continues with, for each combina-
tion of the different combinations of layers identified in
action 351, generating a performance assessment for that
combination based on classification 118/218 (action 355). In
some implementation, for example, the performance assess-
ment for each combination of layers identified in action 351
may take the of the F, score or F-measure of classification
118/218 resulting from each of the different combinations of
layers. The performance assessment for each of the combi-

US 2021/0150316 Al

nation of layers identified in action 351 may be generated by
software code 110, executed by hardware processor 104.
[0039] According to the exemplary outline provided by
FIG. 3, flowchart 350 concludes with determining a pre-
ferred combination of layers for data classification NN
140/240 from among the different combinations of layers
identified in action 351 based on a comparison of the
performance assessments generated in action 355, the pre-
ferred combination including a selected candidate from
amongst the one or more candidate function for the last
activation layer and a selected candidate from amongst the
one or more candidate functions for the loss layer (action
356). For example, where the performance assessments take
the form of F, scores or F-measures for each combination,
the combination of layers having the highest F, score or
F-measure may be determined to be the preferred combina-
tion of layers for optimizing data classification NN 140/240.
The preferred combination of layers for optimizing the
performance of data classification NN 140/240 may be
determined by software code 110, executed by hardware
processor 104.

[0040] In some implementations, the selected candidate
for last activation layer 242(r) of the preferred combination
of layers may be one of a sigmoid activation function or a
softmax activation function. In some implementations, the
selected candidate for last activation layer 242(») may be a
normalization layer, and the preferred combination of layers
may include activation layer 242(n-1) in the form of a
sigmoid activation layer, followed by last activation layer
242(n), followed by loss layer 244. In some such imple-
mentations, the selected candidate for that normalization
layer, i.e., the selected candidate for last activation layer 242
(n) may be one of a softmax activation function or an
L, -normalization function. In some implementations, the
selected candidate for loss layer 244 may take the form of a
CE loss function. For example, in implementations in which
the preferred combination of layers includes activation layer
242(n-1) in the form of a sigmoid activation layer, followed
by last activation layer 242(») in the form of normalization
layer, followed by loss layer 244, loss layer 244 may be a CE
loss layer.

[0041] As noted above, in some implementations, training
dataset 116/216 may include data objects including images.
In some of those implementations, hardware processor 104
may execute software code 110 to generate the images
included in training dataset 116/216. FIG. 4 shows flowchart
460 presenting an exemplary method for use by system 100,
in FIG. 1, to generate training dataset 116/216 for training
data classification NN 140/240 to classify images, according
to one implementation, while FIG. 5 shows an exemplary
diagram of a portion of such a training dataset as training
dataset 516 including montage 570 of real images of numer-
als arranged within labeled tiles 572a, 5725, and 572c.
[0042] With respect to the method outlined in FIG. 4, it is
noted that certain details and features have been left out of
flowchart 460 in order not to obscure the discussion of the
inventive features in the present application. Referring now
to FIG. 4 in combination with FIG. 1, flowchart 460 begins
with obtaining real images (action 461). In some implemen-
tations, the real images may be included in source data 114
obtained from dataset repository 120. In one implementa-
tion, for example, source data 114 including real images may
be obtained from the Modified National Institute of Science
and Technology (MNIST) dataset including real images of

May 20, 2021

handwritten numerals. The real images included in source
data 114 may be obtained from dataset repository 120 by
software code 110, executed by hardware processor 104, via
communication network 108 and network communication
links 128.

[0043] Referring to FIG. 4 with further reference to FIG.
5, flowchart 460 continues with compositing the real images
obtained in action 461 to form montage 570 of the real
images (action 462). In one such implementation, for
example, the original images included in source data 114
may be composited into a montage of nine images. Com-
positing of the real images to form montage 570 may be
performed by software code 110, executed by hardware
processor 104.

[0044] Flowchart 460 continues with identifying multiple
labels for association with montage 570 (action 463). By
choice of parameter, the number of active labels is selected.
In implementations in which the real images are composited
into a montage of nine images, for example, action 463 can
result in any of tiles 572a, 5725, or 572¢ of montage 570
being active with one to nine labels. In implementations in
which training data 116/216 is generated from the MNIST
dataset, training dataset 116/216 may include the same ten
classes included in the MNIST dataset. The multi-label
approach allows multiple numerals to be active where their
positions are not important. Action 463 may be performed
by software code 110, executed by hardware processor 104.
[0045] Flowchart 460 can conclude with labeling montage
570 using one or more of the labels identified in action 463
to generate the images of training dataset 116/216, where
noise is parametrically introduced into training dataset 116/
216, resulting in a subset of those images being purposely
mislabeled (action 464). Action 464 may be performed by
software code 110, executed by hardware processor 104.
[0046] In implementations in which the images included
in training dataset 116/216 are generated based on the
MNIST dataset, the images in training dataset 116/216 differ
from those included in the MNIST dataset in three signifi-
cant ways. First, unlike the images in the MNIST dataset, the
images in training dataset 116/216 are multi-label. As noted
above, the original images may be composited into a mon-
tage of nine images. As further noted above, by choice of
parameter, the number of active labels is selected, which,
referring to FIG. 5, results in any of tiles 5724, 5725, or 572¢
of montage 570 being active with one to nine labels.
[0047] A second difference between training dataset 116/
216 and the MNIST dataset is that training dataset 116/216
contains structured class imbalances that may be denoted as
“peaks.” By choice of parameter, the number of peaks is
chosen, i.e., the number of labels with high likelihood of
being present. This results in a different label distribution,
where certain labels may occur in almost every image.
Extreme imbalance causes two behaviors: (1) the number of
training images will be much higher in those cases, and (2)
an “always-active” label is virtually irrelevant because when
a label is always active there is nothing to learn.

[0048] A third difference between training dataset 116/216
and the MNIST dataset is that training dataset 116/216
contains structured noise in the form of the presence or
absence of labels or images. Again by choice of parameter,
the number of label switches is chosen. This results in a
corrupted label distribution that is characterized by the
number of false positives and false negatives. A false posi-
tive (in view of the labels) is an active label for which there

US 2021/0150316 Al

is no underlying evidence in the image, i.c., the labeled
numeral is not visible in the image. A false negative is an
inactive label despite the presence of its corresponding
numeral in the image. The choice of parameter determines
the likelihood of each case and their combination results in
a label switch, i.e., an extra numeral and an extra label but
mismatched.

[0049] The overall distribution of training dataset 116/216
is characterized by the parameters discussed above. The
value dp is the number of peaks, the value pn is the
likelihood of noise, and the value pa determines the balance
between false positives and false negatives. Other charac-
teristics of the original MNIST dataset may be retained by
training dataset 116/216, such that the images are real
images hand-drawn by humans and labelled by humans. The
images can be clean gray-scale images, where the image
itself is not corrupted beyond human calligraphy.

[0050] Thus, in summary, the task is to learn a multi-label
classification, and determine all active numerals in each
image of training dataset 116/216. Using combinations of
images in source data 114, any number of training and
testing examples can be generated. It is noted that the true
ground truth of source data 114 is recorded, which contains
the actual presence of numerals in each image, in contrast to
the above described corrupted ground truth resulting from
the purposeful introduction of noise into training dataset
116/216.

[0051] With respect to the methods outlined by flowcharts
350 and 460, it is noted that, in some implementations,
hardware processor 104 may execute software code 110 to
perform actions 351, 352, 353, 354, 355, and 356, and/or
actions 461, 462, 463, and 464, in an automated process
from which human involvement may be omitted.

[0052] Thus, the present application discloses systems and
methods for performing data object classification using an
optimized neural network that overcome the drawbacks and
deficiencies in the conventional art. Due to the improved
performance of data classification NN 140/240 during deep
learning made possible by the NN optimization solution
disclosed by the present application, several distinct
improvements over the state-of-the-art result. Examples of
such improvements include enabling the learning to take
place on high-variation and highly unstructured datasets,
improved handling of extreme frequency noise in a dataset,
easier applicability due to the parameter-free normalization,
faster convergence, i.e., less time and energy required in
deep learning, as well as improved recall of labels at a
predetermined precision level, and vice versa. In addition,
the overall training process is less costly due to the reduced
resource requirements, while resulting in data classification
NN 140/240 having superior classification accuracy.

[0053] From the above description it is manifest that
various techniques can be used for implementing the con-
cepts described in the present application without departing
from the scope of those concepts. Moreover, while the
concepts have been described with specific reference to
certain implementations, a person of ordinary skill in the art
would recognize that changes can be made in form and detail
without departing from the scope of those concepts. As such,
the described implementations are to be considered in all
respects as illustrative and not restrictive. It should also be
understood that the present application is not limited to the
particular implementations described herein, but many rear-

May 20, 2021

rangements, modifications, and substitutions are possible
without departing from the scope of the present disclosure.

What is claimed is:

1. A system for classifying data objects, the system
comprising:

a computing platform including a hardware processor and

a system memotry,

a software code and a neural network (NN) stored in the
system memory, the NN having a plurality of layers
including one or more activation layers and a loss layer,
the one or more activation layers comprising a last
activation layer;

the hardware processor configured to execute the software
code to:
identify a plurality of different combinations of layers

for testing the NN, each combination of the plurality
of different combinations of layers including one or
more candidate functions for the last activation layer
and one or more candidate functions for the loss
layer;
for each combination of the plurality of different com-
binations of layers:
configure the NN based on the each combination;
input, into the configured NN, a training dataset
including a plurality of data objects;
receive, from the configured NN, a classification of
the plurality of data objects in the training dataset;
generate a performance assessment for the each
combination based on the classification; and
determine a preferred combination of layers for the NN
from among the plurality of different combinations
of layers based on a comparison of the performance
assessments, the preferred combination of layers
comprising a selected candidate amongst the one or
more candidate functions for the last activation layer
and a selected candidate amongst the one or more
candidate functions for the loss layer.

2. The system of claim 1, wherein the selected candidate
for the last activation layer of the preferred combination of
layers is a softmax activation function, and wherein the last
activation layer follows a sigmoid activation layer.

3. The system of claim 1, wherein the one or more
activation layers includes an additional normalization layer,
and wherein each combination of the plurality of different
combinations of layers further includes one or more candi-
date functions for the additional normalization layer.

4. The system of claim 3, wherein the selected candidate
for the last activation layer is one of a sigmoid activation
function, a softmax activation function, or an L., -normaliza-
tion function.

5. The system of claim 3, wherein the selected candidate
for the loss layer comprises a cross entropy loss function.

6. The system of claim 1, wherein the plurality of data
objects in the training dataset comprises a plurality of
images.

7. The system of claim 6, wherein the hardware processor
is further configured to execute the software code to gener-
ate the plurality of images in the training dataset.

8. The system of claim 6, wherein the hardware processor
is further configured to execute the software code to:

obtain a plurality of real images;

composite the plurality of real images to form a montage
of the plurality of real images;

US 2021/0150316 Al

identify a plurality of labels for association with the

montage;

label the montage using one or more of the plurality of

identified labels to generate the plurality of images in
the training dataset;

wherein noise is parametrically introduced into the train-

ing dataset, resulting in a subset of the plurality of
images being purposely mislabeled.

9. The system of claim 8, wherein a plurality of param-
eters utilized to introduce the noise into the training dataset
comprises a number of peaks (dp) in the training dataset, a
likelihood of noise (pn) in the training dataset, and a balance
(pa) between false positives and false negatives in the
training dataset.

10. A method for use by a system for classifying data
objects, the system including a computing platform having
a hardware processor and a system memory storing a
software code and a neural network (NN), the NN having a
plurality of layers including one or more activation layers
and a loss layer, the or more activation layers comprising a
last activation layer, the method comprising:

identifying, by the software code executed by the hard-

ware processor, a plurality of different combinations of
layers for testing the NN, each combination of the
plurality of different combinations of layers including
one or more candidate functions for the last activation
layer and one or more candidate functions for the loss
layer;

for each combination of the plurality of different combi-

nations of layers:

configuring, by the software code executed by the
hardware processor, the NN based on the each com-
bination;

inputting into the configured NN, by the software code
executed by the hardware processor, a training data-
set including a plurality of data objects;

receiving from the configured NN, by the software
code executed by the hardware processor, a classi-
fication of the plurality of data objects in the training
dataset;

generating, by the software code executed by the hard-
ware processor, a performance assessment for the
each combination based on the classification; and

determining, by the software code executed by the hard-

ware processor, a preferred combination of layers for

the NN from among the plurality of different combi-

nations of layers based on a comparison of the perfor-

mance assessments, the preferred combination of layers

comprising a selected candidate amongst the one or

more candidate functions for the last activation layer

and a selected candidate amongst the one or more

candidate functions for the loss layer.

11. The method of claim 10, wherein the selected candi-
date for the last activation layer of the preferred combination
of layers is a softmax activation function, and wherein the
last activation layer follows a sigmoid activation layer.

12. The method of claim 10, wherein the one or more
activation layers includes an additional normalization layer,
and wherein each combination of the plurality of different
combinations of layers further includes one or more candi-
date functions for the additional normalization layer.

May 20, 2021

13. The method of claim 12, wherein the selected candi-
date for the last activation layer is one of a sigmoid activa-
tion function, a softmax activation function, or an L,-nor-
malization function.

14. The method of claim 12, wherein the selected candi-
date for the loss layer comprises a cross entropy loss
function.

15. The method of claim 10, wherein the plurality of data
objects in the training dataset comprises a plurality of
images.

16. The method of claim 15, further comprising generat-
ing, by the software code executed by the hardware proces-
sor, the plurality of images in the training dataset.

17. The method of claim 15, further comprising:

obtaining, by the software code executed by the hardware

processor, a plurality of real images;

compositing, by the software code executed by the hard-

ware processor, the plurality of real images to form a
montage of the plurality of real images;

identifying, by the software code executed by the hard-

ware processor, a plurality of labels for association with
the montage; and

labeling, by the software code executed by the hardware

processor, the montage using one or more of the
plurality of identified labels to generate the plurality of
images in the training dataset;

wherein noise is parametrically introduced into the train-

ing dataset, resulting in a subset of the plurality of
images being purposely mislabeled.

18. The method of claim 17, wherein a plurality of
parameters utilized to introduce the noise into the training
dataset comprises a number of peaks (dp) in the training
dataset, a likelihood of noise (pn) in the training dataset, and
a balance (pa) between false positives and false negatives in
the training dataset.

19. A method for use by a system having a hardware
processor and a system memory storing a software code and
a neural network (NN), to generate a training dataset for
training the NN to classify images, the method comprising:

obtaining, by the software code executed by the hardware

processor, a plurality of real images;

compositing, by the software code executed by the hard-

ware processor, the plurality of real images to form a
montage of the plurality of real images;

identifying, by the software code executed by the hard-

ware processor, a plurality of labels for association with
the montage; and

labeling, by the software code executed by the hardware

processor, the montage using one or more of the
plurality of identified labels to generate the training
dataset;

wherein noise is parametrically introduced into the train-

ing dataset, resulting in a subset of the training dataset
being purposely mislabeled.

20. The method of claim 19, wherein a plurality of
parameters utilized to introduce the noise into the training
dataset comprises a number of peaks (dp) in the training
dataset, a likelihood of noise (pn) in the training dataset, and
a balance (pa) between false positives and false negatives in
the training dataset.

